Programming Skills for Data Science

Book Description

Programming Skills for Data Science: Start Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Series)
The Foundational Hands-On Skills You Need to Dive into Data Science

“Freeman and Ross have created the definitive resource for new and aspiring data scientists to learn foundational programming skills.”

–From the foreword by Jared Lander, series editor

Using data science techniques, you can transform raw data into actionable insights for domains ranging from urban planning to precision medicine. Programming Skills for Data Science brings together all the foundational skills you need to get started, even if you have no programming or data science experience.

Leading instructors Michael Freeman and Joel Ross guide you through installing and configuring the tools you need to solve professional-level data science problems, including the widely used R language and version-control system. They explain how to wrangle your data into a form where it can be easily used, analyzed, and visualized so others can see the patterns you’ve uncovered. Step by step, you’ll master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales.

Freeman and Ross teach through practical examples and exercises that can be combined into complete data science projects. Everything’s focused on real-world application, so you can quickly start analyzing your own data and getting answers you can act upon. Learn to

  • Install your complete data science environment, including R and RStudio
  • Manage projects efficiently, from version tracking to documentation
  • Host, manage, and collaborate on data science projects with GitHub
  • Master R language fundamentals: syntax, programming concepts, and data structures
  • Load, format, explore, and restructure data for successful analysis
  • Interact with databases and
  • Master key principles for visualizing data accurately and intuitively
  • Produce engaging, interactive visualizations with ggplot and other R packages
  • Transform analyses into sharable documents and sites with R Markdown
  • Create interactive web data science applications with Shiny
  • Collaborate smoothly as part of a data science team

Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Table of Contents

I Getting Started
1 Setting Up Your Computer
2 Using the Command Line
II Managing Projects
3 Version Control with git and GitHub
4 Using Markdown for Documentation
III Foundational R Skills
5 Introduction to R
6
7 Vectors
8 Lists
IV Data Wrangling
9 Understanding Data
10 Data Frames
11 Manipulating Data with dplyr
12 Reshaping Data with tidyr
13 Accessing Databases
14 Accessing Web APIs
V Data
15 Designing Data Visualizations
16 Creating Visualizations with ggplot2
17 Interactive Visualization in R
VI Building and Sharing Applications
18 Dynamic Reports with R Markdown
19 Building Interactive Web Applications with Shiny
20 Working Collaboratively
21 Moving Forward

Book Details

File HostFree Download LinkFormatSize (MB)Upload Date
UsersCloud Click to downloadEPUB10.211/29/2018
How to Download? Report Dead Links & Get a Copy

Leave a Reply