Hands-On Generative Adversarial Networks with PyTorch 1.x

Book Description

Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models

Key Features

  • Implement GAN architectures to generate images, text, , 3D models, and more
  • Understand how GANs work and become an active contributor in the community
  • Learn how to generate photo-realistic images based on text descriptions

Book Description

With continuously evolving research and development, Generative Adversarial (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs over generative models and guides in making the best out of GANs with the help of hands-on examples.

This book starts by taking you through the core concepts necessary to understand how each component of a GAN model works. You'll build your first GAN model to understand how generator and discriminator networks function. As you advance, you'll delve into a range of examples and datasets to build a variety of GAN networks using PyTorch functionalities and services, and become well-versed with architectures, strategies, and evaluation methods for image generation, translation, and restoration. You'll even learn how to apply GAN models to solve problems in areas such as computer vision, multimedia, 3D models, and natural language processing (NLP). The book covers how to overcome the challenges faced while building generative models from scratch. Finally, you'll also discover how to train your GAN models to generate adversarial examples to attack other CNN and GAN models.

By the end of this book, you will have learned how to build, train, and optimize next-generation GAN models and use them to solve a variety of real-world problems.

What you will learn

  • Implement PyTorch's latest features to ensure efficient model designing
  • Get to grips with the working mechanisms of GAN models
  • Perform style transfer between unpaired image collections with CycleGAN
  • Build and train 3D-GANs to generate a point cloud of 3D objects
  • Create a range of GAN models to perform various image synthesis operations
  • Use SEGAN to suppress noise and improve the quality of speech audio

Who this book is for

This GAN book is for machine learning practitioners and deep learning researchers looking to get hands-on guidance in implementing GAN models using PyTorch. You'll become familiar with state-of-the-art GAN architectures with the help of real-world examples. Working knowledge of Python language is necessary to grasp the concepts covered in this book.

Table of Contents

  1. Generative Adversarial Networks Fundamentals
  2. Getting Started with PyTorch 1.3
  3. Best Practices for Model Design and Training
  4. Building Your First GAN with PyTorch
  5. Generating Images Based on Label
  6. Image-to-Image Translation and Its Applications
  7. Image Restoration with GANs
  8. Training Your GANs to Break Different Models
  9. Image Generation from Description Text
  10. Sequence Synthesis with GANs
  11. Reconstructing 3D models with GANs

Book Details

  • Title: Hands-On Generative Adversarial Networks with PyTorch 1.x
  • Author: ,
  • Length: 312 pages
  • Edition: 1
  • Language: English
  • Publisher:
  • Publication Date: 2019-12-12
  • ISBN-10: 1789530512
  • ISBN-13: 9781789530513

Book Link

Download LinkFormatSize (MB)Upload Date
Download from NitroFlareTrue PDF, EPUB66.612/13/2019
Download from Upload.acTrue PDF, EPUB66.612/13/2019
How to Download? Report Dead Links & Get a Copy