Data Analysis with R, 2nd Edition

Data Analysis with R, 2nd Edition Front Cover
0 Reviews
570 pages

Book Description

Key Features

  • Load, wrangle, and analyze your data using R - the world's most powerful statistical language
  • Gain a deeper understanding of of applied statistics and implement them using practical use-cases
  • A comprehensive guide specially designed to take your understanding of R for data analysis to a new level

Book Description

Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex easily, quickly, and succinctly.
Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples.
Packed with engaging problems and exercises, this book begins with a review of R and its syntax. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with "messy data", large data, communicating results, and facilitating reproducibility.
This book is engineered to be an invaluable resource through many stages of anyone's career as a data analyst.

What you will learn

  • Navigate the R environment
  • Describe and visualize the of data and relationships between data
  • Gain a thorough understanding of statistical reasoning and sampling
  • Employ hypothesis tests to draw inferences from your data
  • Learn Bayesian methods for estimating parameters
  • Use bootstrapping and an alternative to parametric hypothesis
  • Perform regression to predict continuous variables
  • Apply powerful classification methods to predict categorical data
  • Perform time series forecasting with Exponential Smoothing methods
  • Handle missing data gracefully using multiple imputation
  • Identify and manage problematic data points
  • Use to clean data sets
  • Employ parallelization and Rcpp to scale your analyses to larger data
  • Put best practices into effect to make your job easier and facilitate reproducibility

Book Details

  • Title: Data Analysis with R, 2nd Edition
  • Author:
  • Length: 570 pages
  • Edition: 2
  • Language: English
  • Publisher:
  • Publication Date: 2018-03-28
  • ISBN-10: 1788393724
  • ISBN-13: 9781788393720
Download LinkFormatSize (MB)Upload Date
Download from NitroFlareTrue PDF, EPUB46.904/03/2020
Download from Upload.acTrue PDF, EPUB46.904/03/2020
How to Download? Report Dead Links & Get a Copy