Artificial Intelligence with Python, 2nd Edition

Book Description

New edition of the bestselling guide to artificial with Python, updated to Python 3.x and TensorFlow 2, with seven new chapters that cover RNNs, AI & , fundamental use cases, chatbots, and more.

Key Features

  • Completely updated and revised to Python 3.x, and TensorFlow 2
  • Seven new chapters that include AI on the cloud, RNNs and DL models, feature engineering, the machine learning data pipeline, and more
  • New author with 25 years of experience in artificial intelligence across multiple industries and enterprise domains

Book Description

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x and TensorFlow 2. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent and create your own applications.

This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data.

Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.

What you will learn

  • Understand what artificial intelligence, machine learning, and data science are
  • Explore the most common artificial intelligence use cases
  • Learn how to build a machine learning pipeline
  • Assimilate the basics of feature selection and feature engineering
  • Identify the differences between supervised and unsupervised learning
  • Discover the most recent advances and tools offered for AI development in the cloud
  • Develop automatic speech recognition systems and chatbots
  • Understand RNNs and various DL models

Who this book is for

The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.

Table of Contents

  1. Introduction to Artificial Intelligence
  2. Fundamental Use Cases for Artificial Intelligence
  3. Machine Learning Pipelines
  4. Feature Selection and Feature Engineering
  5. Classification and Regression Using Supervised Learning
  6. Predictive Analytics with Ensemble Learning
  7. Detecting Patterns with Unsupervised Learning
  8. Building Recommender Systems
  9. Logic Programming
  10. Heuristic Techniques
  11. Genetic Algorithms and Genetic Programming
  12. Artificial Intelligence on the Cloud
  13. Building Games with Artificial Intelligence
  14. Building a Speech Recognizer
  15. Processing
  16. Chatbots
  17. Sequential Data and Time Series
  18. Image Recognition
  19. Neural Networks
  20. Deep Learning with Convolutional Neural Networks
  21. Recurrent Neural Networks and Other Deep Learning Models
  22. Creating Intelligent Agents with Reinforcement Learning
  23. Artificial Intelligence and Big Data

Book Details

Download LinkFormatSize (MB)Upload Date
Download from NitroFlareTrue PDF, EPUB, MOBI82.202/04/2020
Download from UsersCloudTrue PDF, EPUB, MOBI82.202/04/2020
How to Download? Report Dead Links & Get a Copy