Applied Supervised Learning with Python

Book Description

Explore the exciting world of machine learning with the fastest growing in the world

Key Features

  • Understand various machine learning concepts with real-world examples
  • Implement a supervised machine learning pipeline from data ingestion to validation
  • Gain insights into how you can use machine learning in everyday life

Book Description

Machine learning―the ability of a machine to give right answers based on input data―has revolutionized the way we do . Applied Supervised Learning with Python provides a rich understanding of how you can apply machine learning techniques in your data science projects using Python. You'll explore Jupyter Notebooks, the technology used commonly in academic and commercial circles with in-line code running support.

With the help of fun examples, you'll gain experience working on the Python machine learning ―from performing basic data cleaning and processing to working with a range of regression and classification algorithms. Once you've grasped the basics, you'll learn how to build and train your own models using advanced techniques such as decision trees, ensemble modeling, validation, and error metrics. You'll also learn data techniques using powerful Python libraries such as Matplotlib and Seaborn.

This book also covers ensemble modeling and random forest classifiers along with other methods for combining results from multiple models, and concludes by delving into cross-validation to test your algorithm and check how well the model works on unseen data.

By the end of this book, you'll be equipped to not only work with machine learning algorithms, but also be able to create some of your own!

What you will learn

  • Understand the concept of supervised learning and its applications
  • Implement common supervised learning algorithms using machine learning Python libraries
  • Validate models using the k-fold technique
  • Build your models with decision trees to get results effortlessly
  • Use ensemble modeling techniques to improve the performance of your model
  • Apply a variety of metrics to compare machine learning models

Who this book is for

Applied Supervised Learning with Python is for you if you want to gain a solid understanding of machine learning using Python. It'll help if you to have some experience in any functional or language and a basic understanding of Python libraries and expressions, such as arrays and dictionaries.

Table of Contents

  1. Python Machine Learning Toolkit
  2. Exploratory Data and Visualization
  3. Regression Analysis
  4. Classification
  5. Ensemble Modeling
  6. Model Evaluation

Book Details

  • Title: Applied Supervised Learning with Python
  • Author: ,
  • Length: 404 pages
  • Edition: 1
  • Language: English
  • Publisher:
  • Publication Date: 2019-04-27
  • ISBN-10: 1789954924
  • ISBN-13: 9781789954920
Download LinkFormatSize (MB)Upload Date
Download from NitroFlareTrue PDF609/01/2019
Download from Upload.acTrue PDF609/01/2019
How to Download? Report Dead Links & Get a Copy