Building Recommendation Engines

Book Description

Key Features

  • A step-by-step guide to building recommendation engines that are personalized, scalable, and real time
  • Get to grips with the best tool available on the market to create recommender systems
  • This hands-on guide shows you how to implement different tools for recommendation engines, and when to use which

Book Description

A recommendation engine (sometimes referred to as a recommender system) is a tool that lets developers predict what a user may or may not like among a list of given items. Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are movies, music, news, books, research articles, queries, social tags, and products in general.

The book starts with an introduction to recommendation systems and its applications. You will then start building recommendation engines straight away from the very basics. As you move along, you will learn to build recommender systems with popular frameworks such as R, , Spark, Neo4j, and Hadoop. You will get an insight into the pros and cons of each recommendation engine and when to use which recommendation to ensure each pick is the one that suits you the best.

During the course of the book, you will create simple recommendation engine, real-time recommendation engine, scalable recommendation engine, and more. You will familiarize yourselves with various techniques of recommender systems such as collaborative, content-based, and cross-recommendations before getting to know the best practices of building a recommender system towards the end of the book!

What you will learn

  • Build your first recommendation engine
  • Discover the tools needed to build recommendation engines
  • Dive into the various techniques of recommender systems such as collaborative, content-based, and cross-recommendations
  • Create efficient decision-making systems that will ease your work
  • Familiarize yourself with in different frameworks
  • Master different versions of recommendation engines from practical examples
  • Explore various recommender systems and implement them in popular techniques with R, Python, Spark, and others

Table of Contents

Chapter 1. Introduction to Recommendation Engines
Chapter 2. Build Your First Recommendation Engine
Chapter 3. Recommendation Engines Explained
Chapter 4. Data Mining Techniques Used in Recommendation Engines
Chapter 5. Building Collaborative Filtering Recommendation Engines
Chapter 6. Building Personalized Recommendation Engines
Chapter 7. Building Real-Time Recommendation Engines with Spark
Chapter 8. Building Real-Time Recommendations with Neo4j
Chapter 9. Building Scalable Recommendation Engines with Mahout
Chapter 10. What Next - The Future of Recommendation Engines

Book Details

  • Title: Building Recommendation Engines
  • Author:
  • Length: 357 pages
  • Edition: 1
  • Language: English
  • Publisher:
  • Publication Date: 2017-01-05
  • ISBN-10: 1785884859
  • ISBN-13: 9781785884856
File HostFree Download LinkFormatSize (MB)Upload Date
UpLoaded Click to downloadPDF (convert), EPUB, AZW367.601/05/2017
ZippyShare Click to downloadPDF (convert), EPUB, AZW367.601/02/2017
How to Download? Report Dead Links & Get a Copy

Leave a Reply