Applied Text Analysis with Python: Enabling Language Aware Data Products with Machine Learning

Book Description

The of processing has changed dramatically in the past few years. approaches now require mature tools like ’s scikit-learn to apply to text at scale. This practical guide shows programmers and data scientists who have an intermediate-level understanding of and a basic understanding of machine learning and natural language processing how to become more proficient in these two exciting areas of data science.

This book presents a concise, focused, and applied approach to text analysis with Python, and covers topics including text ingestion and wrangling, basic machine learning on text, classification for text analysis, entity resolution, and text visualization. Applied Text Analysis with Python will enable you to design and develop language-aware data products.

You’ll learn how and why machine learning algorithms make decisions about language to analyze text; how to ingest, wrangle, and preprocess language data; and how the three primary text analysis libraries in Python work in concert. Ultimately, this book will enable you to design and develop language-aware data products.

Table of Contents

Chapter 1. Text Ingestion and Wrangling
Chapter 2. Machine Learning on Text

Book Details

  • Title: Applied Text Analysis with Python: Enabling Language Aware Data Products with Machine Learning
  • Author: , ,
  • Length: 250 pages
  • Edition: 1
  • Language: English
  • Publisher:
  • Publication Date: 2017-05-25
  • ISBN-10: 1491963042
  • ISBN-13: 9781491963043
File HostFree Download LinkFormatSize (MB)Upload Date
ZippyShare Click to downloadPDF (Early Release)8.812/25/2016
How to Download? Report Dead Links & Get a Copy

Leave a Reply